

Fig. 1. The molecular structure with the atom labels.

Table 3. Intermolecular contacts (Å)

$F(1) \cdots F(6)^{I}$	2.77(1)	$C(8)\cdots F(4)^{v}$	3.12(1)
$O(3) \cdots F(12)^{II}$	2.94 (1)	$O(1)\cdots F(9)^{v_1}$	3.17 (1)
$O(4) \cdots F(7)^{III}$	3.06(1)	$O(4) \cdots F(3)^{v_{11}}$	3.17 (1)
$O(2) \cdots F(9)^{IV}$	3.07 (1)	$F(3) \cdots F(8)^{IV}$	3.18 (1)
$F(7) \cdots F(8)^{IV}$	3.10(1)	$F(5) \cdots F(10)^{III}$	3.18(1)
$O(3)\cdots F(4)^v$	3.10(1)	$F(3)\cdots F(7)^{iv}$	3.19(1)

The superscripts refer to the following transformations of the atomic coordinates:

(I)	1 - x,	$-\frac{1}{2} + y$,	$1\frac{1}{2} - z$	(V)	-x,	$-\frac{1}{2} + y$,	$1\frac{1}{2} - z$
(II)	$-\frac{1}{2} + x$,	$-\frac{1}{2}-y$,	1 - z	(VI)	х,	-1 + y,	Z
(III)	$-\frac{1}{2} + x$,	$\frac{1}{2} - y$,	1 - z	(VII)	-1 + x,	у,	Ζ.
(IV)	$\frac{1}{2} + x$,	$\frac{1}{2} - y$,	1 - z				

Å in $Co_3(CO)_8(CMe)(PPh_3)$ (Brice, Penfold, Robinson & Taylor, 1970), 1.79–1.83 Å in $Co_2(CO)_6(C_8H_{12}-As_2F_4)$ (Harrison & Trotter, 1971) and 1.75–1.78 Å in $Co_3(CO)_7(C_{10}H_{15}As_2F_4)$ (Einstein & Jones, 1972), and Co-C distances of 1.99 Å in $Co(C_2H_5)(C_{16}H_{14}N_2O_2)$ (Calligaris, Minichelli, Nardin & Randaccio, 1971),

2.04–2.06 Å in $Co\{(B_9C_2H_{10})_2S_2CH\}$ (Churchill & Gold, 1971) and 2.02–2.09 Å in $Co(C_8H_{13})(C_8H_{12})$ (Koda, Takenaka & Watanabé, 1971). The Co–Co separation of 2.552 Å in (I) is slightly longer than the values of 2.49–2.51 in $Co_3(CO)_8(CMe)(PPh_3)$, 2.48 in $Co_2(CO)_6(C_8H_{12}As_2F_4)$ and 2.44–2.48 Å in $Co_3(CO)_7(C_{10}H_{15}As_2F_4)$.

The F-C-F angles in the organic ligand (mean $107 \cdot 1^{\circ}$) are distinctly smaller than the C-C-F angles (mean $111 \cdot 7^{\circ}$). This result is in accord with the relative electronegativities of C and F.

We thank Dr J. L. Davidson and Professor D. W. A. Sharp for crystals of the complex and the Science Research Council for financial support.

References

- BRICE, M. D., PENFOLD, B. R., ROBINSON, W. T. & TAYLOR, S. R. (1970). *Inorg. Chem.* 9, 362–367.
- CALLIGARIS, M., MINICHELLI, D., NARDIN, G. & RANDACCIO, L. (1971). J. Chem. Soc. A, pp. 2720–2724.
- CHURCHILL, M. R. & GOLD, K. (1971). Inorg. Chem. 10, 1928–1933.
- DAVIDSON, J. L. & SHARP, D. W. A. (1975). J. Chem. Soc. Dalton Trans. pp. 2283–2287.
- EINSTEIN, F. W. B. & JONES, R. D. G. (1972). *Inorg. Chem.* 11, 395–400.
- ENEMARK, J. H. & FELTHAM, R. D. (1972). J. Chem. Soc. Dalton Trans. pp. 718-722.
- HARRISON, W. & TROTTER, J. (1971). J. Chem. Soc. A, pp. 1607–1609.
- KODA, S., TAKENAKA, A. & WATANABÉ, T. (1971). Bull. Chem. Soc. Jpn, 44, 653–658.
- LEWIS, D. F., LIPPARD, S. J. & ZUBIETA, J. A. (1972). J. Am. Chem. Soc. 94, 1563-1575.
- PORTA, P., TARANTELLI, T., GASTALDI, L. & FURLANI, C. (1971). Inorg. Chim. Acta, 5, 616–622.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1979). B35, 1225-1227

Holmium Triacetate Tetrahydrate

BY J. W. BATS, R. KALUS AND H. FUESS

Institut für Kristallographie, Universität Frankfurt/Main, Senckenberg-Anlage 30, 6000 Frankfurt/Main, Federal Republic of Germany

(Received 29 December 1978; accepted 24 January 1979)

Abstract. Ho(C₂H₃O₂)₃.4H₂O, triclinic, $P\bar{1}$, Z = 2, a = 9.246 (3), b = 9.361 (3), c = 10.588 (4) Å, a = 90.30 (3), $\beta = 114.93$ (2), $\gamma = 56.94$ (2)°, V = 665.3 (3) Å³, $D_c = 2.07$ Mg m⁻³, μ (Mo Ka) = 6.20 mm⁻¹; Nb-filtered Mo Ka radiation; final R(F) = 0.053. The basic structural element consists of a centrosymmetric dimer with formula $Ho_2(C_2H_3O_2)_6$ -(H₂O)₄. The bonding between dimers consists of hydrogen bonds. The coordination of Ho can be described by a distorted three-vertex trigonal prism with a coordination number of 9. The Ho–O distances range between 2.327 (7) and 2.561 (8) Å. The shortest

0567-7408/79/051225-03\$01.00

© 1979 International Union of Crystallography

Ho–Ho distance is $4 \cdot 159$ (2) Å. The title compound is paramagnetic between $4 \cdot 2$ and 300 K.

Introduction. Crystals of $Ho(C_2H_3O_2)_3.4H_2O$ were obtained from an aqueous solution of Ho_2O_3 and acetic acid. A crystal $0.07 \times 0.15 \times 0.28$ mm was selected. The lattice constants were determined from 12 reflections centred on a Syntex $P2_1$ diffractometer. They differ slightly from the values given by Vadura & Kvapil (1971).

One hemisphere of reflections was collected on a Syntex $P2_1$ diffractometer up to $\sin \theta/\lambda = 0.65$ Å⁻¹ with a $\theta/2\theta$ scan, resulting in 3072 independent observations. Three standard reflections observed after every 45 reflections showed a gradual decrease of about 30% during the data collection, possibly due to a drift in the high voltage of the detector and radiation damage to the crystal. This effect was corrected by rescaling the reflections with respect to the standards. The data were corrected for absorption; the transmission factor ranged from 0.39 to 0.67. A weighting scheme $w(I) = [\sigma^2(I)_{counting} + (0.03I)^2]^{-1}$ was used in the refinement.

The Ho atom was located by the Patterson method. A subsequent Fourier synthesis yielded the C and O atoms. A difference synthesis after refinement with anisotropic thermal parameters yielded the positions of the hydrate H atoms. They were included in the refinement with isotropic thermal parameters fixed at B = 4Å². The positions of the methyl H atoms were less clear, possibly due to the larger thermal motion of these

Table 1. Positional parameters ($\times 10^4$, for H $\times 10^3$), with e.s.d.'s in parentheses

	x	У	z
Но	1848 (1)	4112(1)	4103 (1)
C(1)	1752 (12)	5652 (10)	7130 (9)
C(2)	3596 (14)	5572 (14)	7825 (12)
C(3)	-450 (13)	2318 (11)	6679 (10)
C(4)	303 (17)	402 (12)	7053 (14)
C(5)	3086 (13)	2843 (12)	2083 (9)
C(6)	3625 (16)	2220 (14)	910 (11)
O(1)	1280 (8)	5201 (7)	5974 (6)
O(2)	640 (9)	6174 (8)	7675 (7)
O(3)	739 (8)	2725 (7)	7084 (6)
O(4)	-2329 (9)	3557(7)	5924 (7)
O(5)	3637 (9)	1724 (7)	3167 (7)
O(6)	2022 (10)	4485 (7)	1958 (7)
O(7)	2854 (10)	1586 (8)	5636 (8)
O(8)	4826 (10)	7226 (10)	4200 (8)
O(9)	823 (12)	7408 (8)	55 (8)
O(10)	7255 (12)	1044 (10)	8711 (8)
H(10)	273 (16)	169 (13)	628 (11)
H(11)	384 (15)	63 (12)	616 (10)
H(12)	429 (17)	686 (16)	410 (13)
H(13)	432 (15)	784 (12)	335 (10)
H(14)	145 (16)	636 (13)	66 (11)
H(15)	94 (15)	708 (13)	-60 (10)
H(16)	820 (17)	4 (13)	897 (11)
H(17)	822 (15)	137 (12)	915 (10)

groups. Scattering factors were from International Tables for X-ray Crystallography (1974), except for H (Stewart, Davidson & Simpson, 1965). For Ho the anomalous-dispersion factors of Cromer & Liberman (1970) were applied (f' = -0.666, f'' = 4.678).

The final R(F) = 5.3% and $R_w(F) = 5.0\%$. The calculations were carried out with the XRAY system (Stewart, Kruger, Ammon, Dickinson & Hall, 1972) on the Univac 1108 computer of the University of Frankfurt. The positional parameters of the atoms are reported in Table 1, bond distances and angles in Table 2. A stereoscopic view of the structure is given in Fig. 1.*

Discussion. The rare-earth acetates crystallize either as anhydrous (Karraker, 1969) or as hydrated salts. The lighter rare earths form mono-, sesqui- and dihydrated

Table 2. Bond lengths (Å) and angles (°), with e.s.d.'s in parentheses

$\begin{array}{ccccc} C(1)-C(2) & 1\cdot 50 & (2) \\ C(1)-O(1) & 1\cdot 27 & (1) \\ C(1)-O(2) & 1\cdot 26 & (1) \\ C(3)-C(4) & 1\cdot 51 & (2) \\ C(3)-O(3) & 1\cdot 26 & (2) \\ C(3)-O(4) & 1\cdot 28 & (1) \\ C(5)-C(6) & 1\cdot 53 & (2) \\ C(5)-O(5) & 1\cdot 27 & (1) \\ C(5)-O(6) & 1\cdot 26 & (1) \\ O(7)-H(10) & 0.74 & (13) \\ O(7)-H(11) & 0.79 & (7) \\ O(8)-H(12) & 0.72 & (18) \\ O(8)-H(13) & 0.85 & (11) \\ C(2)-C(1)-O(2) & 121 & (1) \\ C(2)-C(3)-O(3) & 121 & (1) \\ C(4)-C(3)-O(4) & 120 & (1) \\ O(3)-C(5)-O(5) & 121 & (1) \\ C(6)-C(5)-O(5) & 121 & (1) \\ \end{array}$	$\begin{array}{cccc} O(9)-H(14) & 0.88 \ (11) \\ O(9)-H(15) & 0.78 \ (12) \\ O(10)-H(16) & 0.79 \ (9) \\ O(10)-H(17) & 1.02 \ (15) \\ Ho-O(8) & 2.327 \ (7) \\ Ho-O(7) & 2.337 \ (8) \\ Ho-O(1) & 2.348 \ (7) \\ Ho-O(6) & 2.384 \ (9) \\ Ho-O(3) & 2.418 \ (5) \\ Ho-O(2) & 2.434 \ (8) \\ Ho-O(2) & 2.434 \ (8) \\ Ho-O(4) & 2.455 \ (9) \\ Ho-O(5) & 2.457 \ (7) \\ Ho-O(1)' & 2.561 \ (8) \\ C(6)-C(5)-O(6) & 120 \ (1) \\ O(5)-C(5)-O(6) & 119 \ (1) \\ H(10)-O(7)-H(11) & 85 \ (11) \\ H(12)-O(8)-H(13) & 104 \ (13) \\ H(14)-O(9)-H(17) & 88 \ (13) \\ \end{array}$
Fig. 1. A strengt	The structure

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34224 (22 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 3. Hydrogen bonds

$O-H\cdots O$	00	H···O	∠O–H…O
$O(7) - H(10) \cdots O(3)$	2·748 (12) Å	2·10 (15) Å	147 (10)°
$O(7) - H(11) \cdots O(5)$	2.709 (7)	1.95 (8)	160 (13)
$O(8) - H(12) \cdots O(4)$	2.734 (15)	2.05 (19)	161 (14)
$O(8) - H(13) \cdots O(10)$	2.734 (11)	1.91 (9)	163 (15)
$O(9) - H(14) \cdots O(6)$	2.764 (12)	1.91 (14)	162 (13)
$O(9) - H(15) \cdots O(2)$	2.745 (11)	1.98 (11)	164 (16)
$O(10) - H(16) \cdots O(9)$	2.888 (8)	$2 \cdot 11(8)$	169 (12)
$O(10) - H(17) \cdots O(9)$	2.792 (16)	1.81 (14)	160 (9)
	· · · · · ·	· · ·	• • •

acetates while the tetrahydrate is the predominant form for Sm to Lu. The tetrahydrates are isostructural and crystallize in space group P1 (Vadura & Kvapil, 1971). We determined the structure of $Ho(C_2H_3O_2)_3.4H_2O_3$ whose structural details compare closely with those of the isostructural Er compound (Aslanov, Abdul'minev, Porai-Koshits & Ivanov, 1972).

The basic structural element consists of a centrosymmetric dimer formed by two Ho(Ac), units and four water molecules. The link within the dimer is formed by O(1) which belongs to the coordination sphere of two Ho and by the water molecules O(7) and O(8). Two independent carboxyl groups are in the coordination sphere of only one Ho, and are bidentate; the other [with O(1)] is tridentate bridge-cyclic. The dimers are interconnected by water molecules O(9) and O(10). All hydrate H atoms are involved in medium to weak hydrogen bonds (Table 3).

Ho has a ninefold coordination of O atoms, seven from carboxyl groups, and two from water molecules. The Ho-O bonds to the water molecules are slightly shorter than those to the carboxyl groups. The C-O distances of 1.26(2) to 1.28(2) Å are normal for carboxyl groups. They do not confirm the results of Aslanov et al. (1972) who report large differences within one carboxyl group $[1 \cdot 19 (4) \text{ and } 1 \cdot 35 (4) \text{ Å}]$. The O–C–O angles of 119 (1)° are rather small but not unusual. The shortest Ho-Ho distance within the dimer is 4.159(2) Å. A superexchange via O(1) is possible between these two atoms, and may lead to possible magnetic ordering of the rare earths. Further distances of 6.222, 6.445 and 7.671 Å may involve supersuperexchange via carboxyl groups and water molecules. The measurement of the magnetic susceptibility, however, revealed paramagnetic behaviour between $4 \cdot 2$ and 300 K.

The X-ray measurements were performed at the Institut für Kernphysik der Universität Frankfurt by kind permission of Dr M. Müllner.

References

- ASLANOV, L. A., ABDUL'MINEV, I. K., PORAI-KOSHITS, M. A. & IVANOV, V. I. (1972). Dokl. Akad. Nauk SSSR, 205, 343-345.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891-1898.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
- KARRAKER, D. G. (1969). J. Inorg. Nucl. Chem. 31, 2815-2832.
- STEWART, J. M., KRUGER, G. J., AMMON, H. L., DICKINSON, C. & HALL, S. R. (1972). The XRAY system - version of June 1972. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
- VADURA, R. & KVAPIL, J. (1971). Mater. Res. Bull. 6, 865-875.

Acta Cryst. (1979). B35, 1227-1229

$Bis(\mu$ -trifluoroacetato-O,O')-bis[dimethyltin(IV)]

By R. FAGGIANI,* J. P. JOHNSON,† I. D. BROWN* AND T. BIRCHALL†

Institute for Materials Research and Department of Chemistry, McMaster University, Hamilton, Ontario, L8S 4M1, Canada

(Received 7 December 1978; accepted 30 January 1979)

Abstract. $Sn_2(CH_3)_4(C_2F_3O_2)_2$, $C_8H_{12}F_6O_4Sn_2$, $M_r =$ 523.55, monoclinic, space group C2/m, a =14.887 (5), b = 8.223 (5), c = 7.518 (3) Å, $\beta =$ 118.84 (2)°, $D_x = 2.15 \text{ Mg m}^{-3}$, Z = 2. The structure was refined from 1027 diffractometer-measured X-ray

© 1979 International Union of Crystallography

reflections to $R_w = 0.042$. The dimer is isostructural with $Sn_2(CH_3)_4(C_2H_2ClO_2)_2$, having crystallographic

2/m symmetry with Sn-Sn = 2.707 (1), Sn-O(av) =

 $2 \cdot 332$ (3), C-O(av) = $1 \cdot 23$ (1), Sn-C = $2 \cdot 10$ (1) and C-C = 1.536 (9) Å. The fluorine atoms are disor-

^{*} Institute for Materials Research.

[†] Department of Chemistry.